SYSTEMS MANUAL

FOR
CH-47A
HELICOPTERS

INTRODUCTION

This booklet has been prepared by Vertol Division, The Boeing Company to provide you with a condensed reference to the various major systems of your CH47A (Chinook) helicopter. This booklet has been designed for insertion into the present Condensed Check List binder. The information herein will not be revised on a 90 -day revision cycle, but will be reissued approximately every six months.

TABLE OF CONTENTS

PAGE
SECTION I GENERAL INFORMATION
The Helicopter 1
*CH-47A Helicopter 2
*Overall Dimensions 3
Engines 4
*Engine 5
Rotary-Wing System 8
Transmission System 9
Fuel Supply System 11
*Fuel System 12 and 13
Electrical Power Supply System 14
*Ac Powe r Supply 16 and 17
*Dc Power Supply 18 and 19
Hydraulic Power Supply System 20
Flight Control System 21
*Utility Hydraulic System 22 thru 25
*Flight Control Hydraulic System 26 and 27
Landing Gear System 30
Brake System 30
Emergency Equipment 31
Auxiliary Power Unit 31
*Engine Fire Detection and Extinguishing System 32
*Servicing Diagram 34
*Communication \& Associated Electronic Equipment 35
*Heating and Ventilating System 36
*Anti-icing 37
*Incipient Blade Stall Speed 38 and 39

TABLE OF CONTENTS (Continued)

PAGE
SECTION II WEIGHT AND BALANCE DATA
Station Locations 41
JP-4 Fuel Loading Chart 42
Oil Loading Chart 43
Anti-icing Fluid Chart 44
Compartment Data 45
Cargo Compartment Table 46
Personnel Data 47
Personnel Movement Table 48
Litter Patient Data 49
External Cargo Hook Loading Chart 50
Notes for Center of Gravity Table 51
Center of Gravity Table 52 and 53

SECTION I

GENERAL INFORMATION

THE HELICOPTER.

GENERAL.
The model CH-47A is manufactured by Vertol Division, The Boeing Company. It is a twin-turbine-engine tandem-rotary-wing aircraft designed for transportation of cargo, troops, and weapons. The helicopter is powered by two Lycoming T55-L-5 shaft-turbine engines mounted on the aft fuselage. The engines simultaneously drive two tandem 3-bladed rotary wings through a combining transmission, drive shafting, and reduction transmissions. The forward transmission is mounted in the forward pylon above the cockpit (forward cabin section). The aft transmission, the combining transmission, and drive shafting are located in the aft pylon section. Drive shafting from the combining transmission to the forward transmission is housed within is tunnel along the top of the fuselage. A gasturbine auxiliary power unit, which supplies hydraulic pressure for starting the engines, is mounted in the aft pylon section. A pod on each side of the fuselage contains a fuel tank. The helicopter is equipped with four nonretractable dual-wheel landing gear. The wheels of the aft gear are full-swivel type. An entrance door is located at the forward right side of the cabin fuselage section. At the rear of the cabin fuselage section is a hydraulically powered loading ramp. The pilot's seat and controls are located at the right side of the cockpit; the copilot's seat and controls are on the left. The normal gross weight of the helicopter is 25,500 pounds,

2

OVERALL DIMENSIONS

the design gross weight is 27,500 pounds, and the maximum alternate gross weight is 33,000 pounds.

ENGINES.

GENERAL.
The helicopter is powered by two Lycoming T55-L-5 shaft-turbine engines housed in separate nacelles mounted externally next to the aft pylon section. Each engine develops 2,200 shaft horsepower at military power and 1,850 shaft horsepower at normal rated power. The T55-L-5 engine is made up of two main sections: A gas producer section and a power turbine section. The gas producer supplies hot gases for driving the power turbine; it also mechanically drives an engine accessory gear box. The power turbine shaft extends coaxially through the gas producer rotor and rotates independently of it. The gas producer section and the power turbine section are connected only by the hot gases passing from one section to the other. During starting of the engine, air enters the engine inlet and is compressed as it passes through the seven axial stages and one centrifugal stage of the compressor rotor. The compressed air passes through a diffuser. Some of the air enters the combustion chamber where it is mixed with starting fuel and is ignited by two igniter plugs located at approximately the 3 and 9 o'clock positions; some of the air is directed to fuel vaporizers. After the engine is started, the igniter plugs and starting fuel are automatically shut off, and metered fuel is supplied to the vaporizers. Hot expanding gases leave the combustion chamber and drive a single-stage compressor turbine, which drives the compressor rotor. Remaining energy from the combustion gases drives the two-stage power turbine which drives the power

ENGINE

[^0]output shaft to the engine transmission. The T55-L-5 engine lubrication system consists of an integral oil tank which is located inside the air inlet housing and is serviced with approximately 4 gallons of lubricating oil of which 1.85 gallons is usable.

ENGINE POWER CONTROL SYSTEMS.

Each engine is controlled by a separate power control system consisting of controls in the cockpit and a fuel control unit on the engine. Each system provides automatic control of both engine gas producer rotor speed and power turbine speed in response to any setting of the engine controls selected by the pilot. Both engine gas producer rotor speed ($n I$) and power turbine speed (nII) are controlled by the fuel control unit, which varies the amount of fuel delivered to the engine fuel vaporizers. The fuel control unit automatically prevents power changes from damaging the engine regardless of the rate and sequence in which they are applied. Fuel flow is automatically modified to compensate for changes in outside air temperature and compressor discharge pressure.

ENGINE FUEL CONTROL UNITS.

Each engine fuel control unit contains a dual element fuel pump, a gas producer speed governor, a power turbine speed governor, an acceleration-deceleration control, a shaft power and torque limiter, a shutoff valve, and a main metering valve. Mounted on the fuel control unit are two levers: a gas producer lever and a power turbine lever. The output power of the power turbine (a function of speed and torque) is limited by limiting the maximum fuel flow to the gas producer. The maximum gas producer rotor speed is set by the engine condition lever in the cockpit. The engine condition lever
electromechanically positions the gas producer lever, which controls the shutoff valve and the operating level of the gas producer. During flight the engine condition lever is left at the maximum limit and the output shaft speed is regulated by the power turbine speed governor. The power turbine lever is electromechanically positioned by the engine beep trim switches. The output shaft torque is limited by the shaft output torque limiter, which reduces the maximum fuel flow when the power turbine speed is reduced. The position of the main metering valve is determined by the gas producer speed governor, power turbine speed governor, the acceleration-deceleration control, or the shaft power and torque limiter, depending on engine requirements at that time. The governor or the control unit demanding the least fuel flow overrides the others in regulating the metering valve.

The power turbine speed governor senses the speed of the power turbine and regulates the amount of fuel which is supplied to the gas producer. This slows down or speeds up the gas producer rotor so that the power turbine, and therefore the rotary-wing system, remains mains at nearly constant speed as the loads vary. When the pitch of the rotary-wing blades is zero, the amount of power being supplied by either engine is at a minimum. As the pitch is increased, more power is required from the engine to maintain constant rotarywing speed; thus power turbine speed (nII) starts to drop. The power turbine speed governor senses the drop of nII and increases the amount of fuel to the gas producer, thus creating more hot gases for the power section of the engine. This increases nII until it has returned to the governor setting. Decreasing pitch causes nII to increase. The power turbine governor
senses this increase and reduces the amount of fuel to the gas producer, thus decreasing the amount of hot gases for the power turbine and reducing nII to the governor setting.

The power turbine speed governor design is such that it will allow the power turbine output speed to decrease approximately five percent when the power loading varies from minimum to full load. This characteristic, droop, is eliminated by a droop eliminator linked to the thrust control rod. The droop eliminator automatically advances the power turbine lever to compensate for droop as pitch is increased. Another type of droop, which is only transient, occurs as a result of the time required for the engine to respond to changing loads.

ROTARY-WING SYSTEM.
GENERAL.

The helicopter receives its lift from the rotary-wing system which consists of two fully articulated counterrotating rotary wings. The forward rotary wing is driven by the forward transmission through a short vertical drive shaft. The aft rotary wing is driven by the aft transmission through a vertical rotary-wing drive shaft. Each rotary wing is made up of three rotary-wing blades which are interchangeable on their own head and a rotary-wing head. The rotary-wing head consists of a hub connected to three pitch-varying shafts by three horizontal hinge pins. These pins permit blade flapping. Stops on the top and the bottom of the hub limit the blade flapping motion. Mounted coaxially over the pitch-varying shafis are pitch-varying
housings to which the blades are attached by vertical hinge pins. These pins permit blade leading and lagging. Each pitch-varying shaft is connected to the pitchvarying housing by a laminated tie bar. Blade pitch changes are made through the pitch-varying shaft and housing. A direct-action shock absorber is attached to the blade socket and to the pitch-varying housing. When the inboard end of each shock absorber is disconnected, the blades can be folded in either direction about the vertical hinge pins. Each rotary-wing blade is constructed of fiberglass boxes supported by ribs and bonded to a steel D-spar. This spar forms the leading edge of the blade. Balance weights, used to keep the blade in track, are contained in the blade tip. Seven lubricating oil tanks are contained in each rotary wing: a tank on the top of the hub with oil for the horizontal hinge pin bearings, and a separate tank for each vertical hinge pin bearing set and for each pitchvarying bearing set.

TRANSMISSION SYSTEM.

GENERAL.

Engine power is supplied to the rotary wings through a mechanical transmission system. The transmission system consists of a forward transmission, an aft transmission, a combining transmission, two engine transmissions, and drive shafting. Power from the engine transmissions is transmitted through separate drive shafts to the combining transmission. The combining transmission combines the power of the engines and transmits it at reduced shaft speed through drive shafts to the forward and aft transmissions. Further speed
reduction occurs in these transmissions. Engine speed is reduced to rotary-wing speed by an overall ratio of 66:1.

Each transmission has a completely separate lubrication system. Oil pumps supply oil to lubricating jets in the transmissions. An oil pump for the engine transmissions and the combining transmission is contained in the top of the combining transmission below a threecompartment sump. The forward transmission oil pump is mounted on the bottom of the forward transmission. The oil pump for the aft transmission is on the accessory gear box. Three oil coolers are located in the aft pylon section. One cooler, composed of three separate sections, is for each engine transmission and the combining transmission. The other two coolers are for the forward and aft transmissions. Air for these coolers is drawn into the pylon section by a fan driven by the aft transmission.

Mounted on the rear of the aft transmission is an accessory gear box. This gear box receives power through a sprag overrunning clutch to drive two generators, three hydraulic pumps, one lubricating pump, and one hydraulic motor. The sprag clutch permits operation of the accessories by the auxiliary power unit without the aft transmission operating. A sprag clutch is also contained in each engine transmission. If an engine fails, the transmission system will continue to function without drag from the inoperative engine. Each engine transmission has a magnetic chip detector plug which is connected to a respective red warning light inside the aft pylon above the transmission oil coolers. Magnetic drain plugs are installed in the other transmissions. A dephasing unit is built into
the combining transmission to permit quick dephasing and phasing of the rotary wings.

FUEL SUPPLY SYSTEM.

GENERAL.

The fuel supply system furnishes fuel for the two engines, the heater, and the auxiliary power unit (apu). This system consists of two separate fuel systems connected by a crossfeed line and valve. Each system consists of a fuel tank contained in a respective pod on the side of the fuselage, two ac operated fuel booster pumps, two float-controlled solenoid valves, and a fuel valve (firewall fuel shutoff). Each booster pump delivers fuel under pressure to a respective solenoid valve. Fuel flows from the normally open float control solenoid valve through the fuel valve and thence through the fuel control unit. Float switches next to the booster pumps inside the fuel tank and a pressure switch downstream of the solenoid valves are electrically connected to the solenoid valves through relays. If a float switch becomes exposed from the fuel and the differential pressure across the respective solenoid valve is less than 10 psi, as sensed by the pressure switch, the solenoid valve will close. If one of the booster pumps fails or becomes exposed, a check valve prevents flow back into the tank. Vent lines extend along the top of each fuel tank; fuel cannot escape through these lines in normal helicopter attitudes. Fuel is normally delivered from the left tank to the apu fuel control unit by a separate dc operated booster pump. Fuel system switches are located on the overhead panel in the cockpit; caution lights are located on the console.

ELECTRICAL POWER SUPPLY SYSTEM.

GENERAL.

Alternating current is the primary source of power used to operate the electrical and electronic equipment. Two ac generators (alternators), driven by the accessory gear box on the aft transmission, produce 208volt 3 -phase 400-cycle current. The accessory gear box is driven by either a hydraulic motor powered by the auxiliary power unit or by the aft transmission through a sprag clutch. The ac system provides 28 volt direct current through two transformex-rectifiers located in the forward section of the left fuselage pod. Direct current is also supplied by a 24 -volt nickelcadmium battery. On the ground, both 208 -volt 3 -phase alternating current and 28 -volt direct current are supplied by connecting an external power source to the external power receptacles. If only ac external power is utilized, dc power is supplied by the helicopter transformer-rectifiers. If both ac and dc external power is used, the transformer-rectifiers are automatically disconnected from the buses. If only dc external power is available, the apu must be used to provide ac power. Circuits are protected by circuit breakers. The electrical load is divided between the two ac generators. Should one generator fail, the other automatically will take over the entire load.

AC SYSTEM.

The ac system supplies 208 -volt 3 -phase 400 -cycle current from the No. l ac generator to a primary 3phase bus and from the No. 2 ac generator to a secondary 3-phase bus. An auxiliary 3-phase bus is
connected to the primary bus through an auxiliary bus relay. The ac operated equipment is powered by these three buses. Some of the equipment is operated by 115 -volt single-phase alternating current. Other equipment is operated by 28 -volt ac power supplied through a transformer. The ac system is protected from overvoltage, undervoltage, and underfrequency conditions by a generator control panel. A bus tie relay is located between the primary and secondary 3-phase buses. If either generator fails, this bus tie relay closes automatically to connect the disabled bus to the operating generator. This ensures the continuous operation of all ac equipment. During engine starting, the No. 2 generator, the No. 2 transformer-rectifier, and the 208-volt ac, 3-phase auxiliary bus are cut out of the system to reduce the starting load on the auxiliary power unit. External ac power is supplied to the ac buses of the helicopter by connecting the external ac power source to the ac external power receptacle. Application of external power closes the ac external power relay which connects the power source to the primary bus. If the primary bus is already energized by the helicopter generators, an interlock circuit between the external power relay and the main relays prevents the use of external power. If the external power phase sequence is unlike that of the helicopter bus, a phase sequence network prevents the external power relay from closing.

DC SYSTEM.

The dc system supplies 28 -volt direct current from the No. l transformer-rectifier to a primary bus and from the No. 2 transformer-rectifier to a secondary bus. The ac system supplies input power to the

2OB-VOLT SECONDARY BUS (30)

DC POWER SUPPLY

transformer-rectifiers. A radio bus is connected to the primary bus through a radio bus tie relay which opens during engine starting to reduce starting load. An emergency bus is connected to the primary bus through an emergency bus relay. The 24 -volt nickelcadmium (chemically basic) battery, located in the forward section of the left fuselage pod, supplies emergency dc power and power for the apu starting circuits through a battery relay. The battery capacity is ll ampere-hours. A bus tie relay is located between the primary and secondary buses. If either transformerrectifier fails, the respective transformer-rectifier failure relay energizes and the bus tie relay closes automatically to connect the disabled bus to the operating transformer-rectifier. This ensures continuous operation of all dc equipment. External dc power is supplied to the dc buses of the helicopter by connecting the external dc power source to the dc external power receptacle. Application of external power closes the dc external power relay which connects the power source to the primary bus. If the polarity of the external power is reversed, a blocking diode in the circuit of the external power relay prevents that relay from closing.

HYDRAULIC POWER SUPPLY SYSTEM.

GENERAL.

The hydraulic power supply system is made up of three completely separate systems: a No. l flight control system, a No. 2 flight control system, and a utility system. Each system contains a separate variable-delivery pump and a separate tank. The No. l flight control system powers one set of the four dual upper boost
actuators, one set of the three dual stability augmentation system extensible links, and one set of four dual stick boost actuators. The No. 2 flight control system powers the other set of each of the above actuators. The utility system supplies hydraulic power to operate the auxiliary power unit motor-pump, the two engine starter motors, the rampactuating cylinders, the cargo door actuator hydraulic motor, the brakes, the swivel locks, the rotor brake, the cargo hook actuator, the winch hydraulic motor, and the accessory gear box motor. The starting section of the utility system contains an accumulator and a hand pump. When fully charged, the accumulator contains enough pressurized fluid to operate the auxiliary power unit motor-pump for apu starting. Another accumulator is contained in the utility system for the rotor brake. This accumulator provides reserve supply of pressure for the rotor brake when the utility system is notoperating. Mounted on each accumulator is a separate air pressure indicator. Normal operating pressure for the hydraulic systems is 3,000 psi. During engine starting, the auxiliary power unit delivers 4,000 psi to run the engine starter motors. Pressure reducers are contained in each system for reducing main pressure to the pressure required for operation of various units of equipment. The capacity of each flight control system tank is 10.5 pints of fluid. The utility system tank capacity is 12.7 pints of fluid with the ramp up.

FLIGHT CONTROL SYSTEM.

GENERAL.

The helicopter is controlled by changing the pitch of the blades either collectively or individually. Pitch

HYDRAULIC SYSTEM - UTILITY

changes are made by the pilot's movement of the flight controls which include a thrust control rod, a cyclic stick, and directional pedals. The pilot's controls are interconnected with the copilot's controls. Flight control movements are transmitted through a system of bellcranks and push-pull tubes to a mixing unit located just aft of the cockpit adjacent to the forward transmission. The control movements are mixed to give the correct lateral cyclic and pitch motions to the rotary wings through dual hydraulically powered actuators. These boost actuators are located under each swashplate. Each set of the dual actuators is powered by a separate hydraulic flight control system. The helicopter is vertically controlled with the thrust control rod through application of equal collective pitch to both rotary wings. Directional control is obtained with the directional pedals by imparting equal but opposite lateral cyclic pitch to the rotary wings. Lateral control is obtained by application of equal lateral cyclic pitch to the rotary wings with the cyclic stick. The helicopter is controlled longitudinally with the cyclic stick through application of equal but opposite collective pitch to both rotary wings.

DUAL STABILITY AUGMENTATION SYSTEM (SAS) (AN/ASW-24).

The Stability Augmentation System (SAS) automatically maintains stability about the pitch, roll, and yaw axes of the helicopter. With SAS, it is possible to fly ''hands off" for several minutes, and make coordinated turns, using the cyclic stick, through a wide range of forward speeds. SAS provides only limited authority (16 percent in the pitch axis, 20 percent in the roll axis, and 40 percent in the yaw axis); sufficient overtravel has been built into the SAS so that the pilot retains complete
control in case of failure of the system. The basic components of the SAS are: three dual extensible links, two SAS amplifiers (control boxes), and a control switch mounted on the overhead switch pane1. Power to operate and control the SAS is supplied by the $28-$ volt dc primary bus and the 115 -volt ac primary bus through four circuit breakers labeled NO. l SAS DC, NO. 1 SAS AC, NO. 2 SAS DC, and NO. 2 SAS AC, located on the overhead circuit breaker panel.

DIFFERENTIAL COLLECTIVE PITCH SPEED TRIM.

A fully automatic differential collective pitch (dcp) speed trim system in incorporated in the flight control system to provide a positive cyclic stick gradient and static speed stability. With increased stabilized forward airspeed, the cyclic stick position is further forward than it is at a decreased stabilized forward airspeed. Without the dcp speed trim system, the stick gradient would be negative at an increased stabilized airspeed. If flight airspeed is constant and the helicopter is temporarily displaced longitudinally by gusty wind conditions causing an airspeed change, the speed trim system will return the helicopter to its original airspeed.

LONGITUDINAL CYCLIC SPEED TRIM.

A fully automatic longitudinal cyclic speed trim system and a manual longitudinal cyclic speed trimsystem are incorporated in the flight controlsystem. The longitudinal cyclic trim system reduces the angle of attack of the fuselage relative to the airstream as forward airspeed is increased, thus reducing fuselage drag. A
longitudinal cyclic trim actuator is installed under each of the swashplates. Signals are automatically transmitted to these actuators by either the speed trim control box or by commanded signals from the manual longitudinal cyclic speed trim switches on the console. When using the semi-automatic method of trimming, the cyclic trim indicators mounted on the center instrument panel are used.

LANDING GEAR SYSTEM.

GENERAL.

The landing gear system consists of four nonretractable dual-wheel landing gear mounted under the fuselage pods. The forward wheels are fixed fore and aft. The aft wheels are full-swivel (3600) type which can be locked in a trailed position. Each gear has an individual air-oil shock strut.

BRAKE SYSTEM.

GENERAL.

The four wheels of the forward landing gear are equipped with single-disk hydraulic brakes; the four wheels of the aft landing gear are equipped with single-disk hydraulic parking brakes. Only the forward brakes are applied by depressing either the pilot's or copilot's brake pedals. Both the forward brakes and the aft parking brakes can be applied and brake pressure can be maintained by pulling out the parking brake knob while the brake pedals are depressed. Hydraulic pressure for the brakes is supplied by the utility hydraulic system.

EMERGENCY EQUIPMENT.

ENGINE FIRE EXTINGUISHER SYSTEM.

The engine fire extinguisher system enables either the pilot or the copilot to extinguish a fire in either engine compartment. The system consists of two fire control handles, a fire extinguisher agent switch, and a fire detector test switch on the instrument panel; two extinguisher agent containers mounted on the overhead structure at stations 482.00 and 502.00 ; and a main circuit breaker protection box mounted on the overhead structure at station 534.00. The containers are partially filled with monobromotrifluoromethane
(BRF3C) and pressurized with nitrogen or oxygen. The agent in one or both of the containers canbe discharged into either compartment. Selection of the compartment is made by pulling the appropriate fire control handle. Selection of the container is made by placing the fire extinguisher agent switch in the appropriate position.

AUXILIARY POWER UNIT.

GENERAL.

The T-62T-2 gas turbine auxiliary power unit (apu) is mounted in the lower portion of the aft pylon section above the ramp. Intake air is drawn through an opening in the right-hand side of the aft pylon section and the exhaust is discharged through a tunnel outlet on the centerline of the aft pylon section. The basic components of the apu are the gas turbine engine, reduction drive assembly, hydraulic motor-pump, and the fuel control. The apu provides hydraulic pressure from the motor-pump mounted on the reduction drive assembly

ENGINE FIRE DETECTION AND EXTINGUISHING SYSTEM

- - - TEST AND DETECTION CIRCUIT
- EXT. CIRCUIT
to hydraulically actuate the accessory gear box motor which rotates the accessory gear box pump, thus supplying the necessary 4,000 psi pressure to actuate the main power plant (T55-L-5) starter motors. The apu can also be used to provide an alternate source of hydraulic pressure for the utility hydraulic system. The apu has a usable output shaft drive speed of $6,000 \mathrm{rpm}$ producing a normal rated gas turbine output of 55 horsepower at sea level, l250F. The apu oil supply is integral and contained within the sump of the reduction drive assembly. The maximum allowable oil consumption is 0.1 pounds/hour. The apu receives fuel from the helicopter fuel system through a fuel booster pump, a manual fuel shutoff valve, and an electrically controlled solenoid valve. The maximum allowable fuel consumption of the apu is 73 pounds/hour. The specific fuel consumption is 1.3 pounds/shaft horsepower/ hour. Internal sensing switches indicate overspeeding, excessive exhaust gas temperatures ($1060^{\circ} \mathrm{F}$), and low oil pressure through warning lights on the apu control panel. The apu control switch, tachometer, and warning lights are located on the overhead switch panel.

SERVICING DIAGRAM

SPECIFICATIONS

COMA	N/GMT	N ASE	EIATE EIE	TRON	
TYPE	DESIGNATION	FUNCTION	OPERATOR	RANGE	LOCATION
INTERPHONE	SB-329/AR	INTERCOMMUNICATION BETWEEN CREW MEMBERS	PILOT, COPILOT, TROOP COMMANDER, HOIST OPERATOR, AND GROUND CREW	ALL CREW STATIONS AND EXTERIOR STATIONS	THREE INT PANELS ON THE CONSOLE, HOIST OPERATOR'S SIATION, TWO EXTERIOR STATIONS
INTERPHONE	C-1611/A1C	INTERCOMMUNICATION BETWEEN CREW MEMBERS	PILOT, COPILOT, TROOP COMMANDER, HOIST OPERATOR, RAMP STATION, AND GROUND CREW	ALL CREW STATIONS AND EXTERIOR STATIONS	THREE INT PANELS ON THE CONSOLE, HOIST OPERATOR'S STATION, RAMP STATION, TWO EXTERIOR STATIONS
PUBLIC ADDRESS		PASSENGER ALERTING	PILOT AND TROOP COMMANDER	CABIN FUSELAGE SECTION	CONTROL PANEL ON CONSOLE, EIGHT AMSPEAKERS IN CABIN FUSELAGE SECTION
FM LLALSON SET	AN/ARC-44	TWO-WAY FM COMMUNICATION	PILOT AND COPILOT	50 MILES	CONTROL PANEL ON CONSOLE
UHF RADIO SET	AN/ARC-55	TWO. WAY UHF COMMUNICATION	PILOT AND COPILOT	LINE OF SIGHT	CONTROL PANEL ON CONSOLE
VHF RADIO SET	$\begin{gathered} \text { AN/ARC-73 } \\ \text { OR } \\ \text { AN/ARC-73A } \end{gathered}$	SHORT RANGE 2-WAY VHF COMMUNICATION	PILOT AND COPILOT	LINE OF SIGHT	CONTROL PANEL ON CONSOLE
DIRECTION FINDER SET	AN/ARN-59(V)	AUTOMATIC DIRECTION FINDING AND HOMING	PILOT AND COPILOT	50 TO 100 MILES FOR RANGE SIGNALS; 100 TO 150 MILES FOR BROADCAST SIGNALS	CONTROL PANEL ON CONSOLE
$\begin{aligned} & \text { VHF } \\ & \text { NAVIGATION SET } \end{aligned}$	$\begin{aligned} & \text { AN/ARN-30A } \\ & \text { OR } \\ & \text { AN/ARN-30D } \end{aligned}$	RECEIVES OMNIDIRECTIONAL RADIO RANGE BEARING INFORMATION AND VHF VOICE	PILOT AND COPILOT	LINE OF SICHT	CONTROL PANEL ON CONSOLE
MARKER BEACON SET	$\begin{gathered} \text { AN/ARN-32 } \\ \text { OR } \\ \text { R-1041/ARN } \end{gathered}$	VISUAL AND AURAL MARKER BEACON RECEPTION	PILOT AND COPILOT	LOCAL	CONTROLS ON CONSOLE
RADAR ALTIMETER	AN/APN-22	ALTITUDE MEASURING	PILOT AND COPILOT	10, 000 FEET OVER LAND 20, 000 FEET OVER WATER	INDICA YOR AND CONTROLS ON INSTRUMENT PANEL
IEF SET	AN/APX-44	IDEŃTIFICATION AND TRACKING	PILOT AND COPILOT	LINE OF SIGHT	CONTROL PANEL ON CONSOLE
EMERGENCY VHF COMMAND TRANSMITTER	T-366A/ARC	EMERGENCY TRANSMISSION	PILOT AND COPILOT	LINE OF SIGHT	CONTROL PANEL ON CONSOLE
HIGII FREQUENCY RADIO SET	AN/ARC-95	LONG RANGE 2- WAY COMMUNICATIONS	PILOT AND COPILOT	TO 2,000 MILES	CONTROL PANEL ON CONSOLE
RANGE OF TRANSMISSION AND RECEPTION IS DEPENDENT UPON MANY VARIABLES INCLUDING WEATHER CONDITIONS, TIME OF DAY, OPERATING FREQUENCY, POWER OF TRANSMITTER, AND ALTITUDE OF HELICOPTER.					

HEATING AND VENTILATING SYSTEM

INCIPIENT BLADE STALL SPEED

$$
\begin{aligned}
& \text { ELADE STALL BY ASA } \\
& \text { FACTORY MARGINFOR } \\
& \text { CRUISING OPERATION. }
\end{aligned}
$$

SECTION II

WEIGHT AND BALANCE DATA

		FUEL	$\begin{aligned} & -4 \equiv \\ & \text { ING CHART } \\ & -5624 \mathrm{~B}) \end{aligned}$		
WEIGHT (LB)	$\begin{aligned} & \mathrm{ARM}=317.3 \\ & \mathrm{MOM} / 1000 \end{aligned}$	WEIGHT (LB)	$\begin{gathered} \mathrm{ARM}=317.3 \\ \mathrm{MOM} / 1000 \end{gathered}$	WEIGHT (LB)	$\begin{gathered} \mathrm{ARM}=317.3 \\ \mathrm{MOM} / 1000 \end{gathered}$
50	15.9	1450	460.1	2850	904.3
100	31.7	1500	476.0	2900	920.2
150	47.6	1550	491.8	2950	936.0
200	63.5	1600	507.7	3000	951.9
250	79.3	1650	523.5	3050	967.8
300	95.2	1700	539.4	3100	983.6
350	111.1	1750	555.3	3150	999.5
400	126.9	1800	571.1	3200	1015.4
450	142.8	1850	587.0	3250	1031.2
500	158.7	1900	602.9	3300	1047.1
550	174.5	1950	618.7	3350	1063.0
600	190.4	2000	634.6	3400	1078.8
650	206.2	2050	650.5	3450	1094.7
700	222.1	2100	666.3	3500	1110.6
750	238.0	2150	682.2	3550	1126.4
800	253.8	2200	698.1	3600	1142.3
850	269.7	2250	713.9	3650	1158.1
900	285.6	2300	729.8	3700	1174.0
950	301.4	2350	745.7	3750	1189.9
1000	317.3	2400	761.5	3800	1205.7
1050	333.2	2450	777.4	3850	1221.6
1100	349.0	2500	793.3	3900	1237.5
1150	364.9	2550	809.1	3950	1253.3
1200	380.8	2600	825.0	4000	1269.2
1250	396.6	2650	840.8	\% 4037	1280.9
1300	412.5	2700	856.7	4050	1285.1
1350	428.4	2750	872.6	** 4095	1299.3
1400	444.2	2800	888.4	4100	1300.9

NOTES:

1. Iwo fuselage tanks. Fuel consumed simultaneously; 621 gallons, 50% selfsealing and; 630 gallons, non-self-sealing.
2. Asterisk (*) indicates approximate weight and moment for full fuselage tanks (50% self-sealing) at 6.5 pounds per gallon.
3. Double asterisk (${ }^{2} \cdot{ }^{2}$) indicates approximate weight and moment for full fuselage tanks (non-self-sealing) at 6.5 pounds per gallon.
4. Total weight of fuel is dependent upon the specific gravity and temperature. Therefore, the notation "FULL" does not appear on the fuel quantity gages. Variation should be anticipated in gage readings when tanks are full.

OIL LOADING CHART
TWO TANKS INTEGRAL WITH ENGINES
3.7 GALLONS USABLE ARM $=480.7$

GALLONS	WEIGHT (LB)	
1	8	3.8
3	15	7.2
3.7		

NOTE:
Total capacity of two tanks is 5.9 gallons.
5.9 Gals. $=\left\{\begin{array}{l}\text { Usable } \\ \text { Unusable }\end{array}\right.$
3.7 Gals.

Oil in Lines
2.2 Gals.?
1.1 Gals. $\}=\begin{aligned} & 3.3 \text { Gals. } \\ & \text { Unusable Oil }\end{aligned}$
(See Chart A)

	ANTI-ICING FLUID WEIGHT AND MOMENT TABLE		
	TANK	FWD TANK $\mathrm{ARM}=124.0$	AFT TANK $\mathrm{ARM}=520.0$
GALLONS	WEIGHT (LB)	MOM	11000
1	7	. 9	3.6
2	14	1.7	7.3
3	22	2.7	11.4
4	29	3.6	15.1
5	36	4.5	18.7
6	43	5.3	22.4
7	50	6.2	26.0
8	58	7.2	30.2
9	65	8.1	33.8
10	72	8.9	37.4
11	79	9.8	41.1
12	86	10.7	44.7
13	94	11.7	48.9
14	101	12.5	52.5
15	108	13.4	56.2
16	115	14.3	59.8
17	122	15.1	63.4
18	130	16.1	67.6
19	137	17.0	71.2
20	144	17.9	74.9

EXAMPLE:

15 gallons each tank, weight $(108+108)=216$ pounds; moment/ 1000 $(13.4+56.2)=69.6$

NOTES:

1. Anti-icing fluid based upon 85% isopropyl alcohol and 15% glycerine which equals 7.17 pounds per gallon.
2. Total capacity is 40 gallons (2 tanks) or 288 pounds.

CARGO COMPARTMENT TABLE

¢	$\begin{aligned} & \text { ñ } \\ & \hline \end{aligned}$	$$	
［4］	$\stackrel{\text { ヘ̆ }}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{n}$	
－	$\stackrel{\text { ¢ }}{\text { ¢ }}$	B	
u	$\stackrel{\rightharpoonup}{\infty}$		M ザ
		合	N

［4	$\stackrel{\sim}{n}$	$\begin{aligned} & 0 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	
반	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { ज̈ } \\ & \text { n } \end{aligned}$	
－	¢	$\stackrel{\text { ® }}{4}$	
U	$\stackrel{\rightharpoonup}{\infty}$		

								PERSONNEL DATA											
COMPT	A	B	c					D						E					
$\begin{aligned} & \text { Location } \\ & \text { or } \\ & \text { Seat No. } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{0} \\ & \ddot{0} \end{aligned}$	B 0 0 0 0 \vdots H H	1	2 $\&$ 3	4 8 8	6 $\&$ 7	8 8 9	10 $\&$ 11	12 $\&$ 13 13	保 14	16 8 17 17	18 8 19	20 8 21 21	22 $\&$ 23	24 \& 25	26 $\&$ 27	28 $\&$ 29	30 8 31	32 8 33
Arm																			
$\frac{\frac{\text { One }}{\text { Person: }}}{\text { Weight }}$	200	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260
$\begin{array}{r} \hline \mathrm{MOM} / \\ 1000 \\ \hline \end{array}$	14.9	27.3	39.3	44.5	49.7	54.9	60.1	65.3	70.5	75.7	80.9	86.1	91.3	96.5	101.7	206.9	112.1	117.3	122.5
$\frac{\text { Two }}{\text { Persons: }}$																			
MOM/ 1000	29.8	-	-	88.9	99.3	109.7	120.1	130.5	140.9	151.3	161.7	7172.1	182.5	192.9	203.3	213.7	224.1	234.5	244.9

			TABLE OF MOMENTS FOR PERSONNEL MOVEMENT (MOMENT/1000)															
Seat No.	$\begin{aligned} & \text { Iroop } \\ & \text { Cdr's } \end{aligned}$	1	$\begin{gathered} 2 \\ \text { or } \\ 3 \end{gathered}$	$\begin{gathered} 4 \\ \text { or } \\ 5 \\ \hline \end{gathered}$	6 or 7	$\begin{gathered} 8 \\ \text { or } \\ 9 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { or } \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & \text { or } \\ & 13 \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ \text { or } \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 16 \\ & \text { or } \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & \text { or } \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & \text { or } \\ & 21 \end{aligned}$	$\begin{aligned} & 22 \\ & o x \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & \text { or } \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & \text { or } \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & \text { or } \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & \text { or } \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & \text { or } \\ & 33 \\ & \hline \end{aligned}$
Arm	104.9	151.0	171.0	191.0	211.0	231.0	251.0	271.0	291.0	311.0	331.0	351.0	371.0	391.0	411.0	431.0	451.0	471.0
One Person	27.3	39.3	44.5	49.7	54.9	60.1	65.3	70.5	75.7	80.9	86.1	91.3	96.5	101.7	106.9	112.1	117.3	122.5
$\begin{aligned} & \text { Seats } 32 \\ & \text { or } 33 \end{aligned}$	95.2	83.2	78.0	72.8	67.6	62.4	57.2	52.0	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2	
$\begin{gathered} \hline \text { Seats } 30 \\ \text { or } 31 \\ \hline \end{gathered}$	90.0	78.0	72.8	67.6	62.4	57.2	52.0	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2		
$\begin{aligned} & \text { Seats } 28 \\ & \text { or } 29 \\ & \hline \end{aligned}$	84.8	72.8	67.6	62.4	57.2	52.0	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2			
$\begin{gathered} \text { Seats } 26 \\ \text { or } 27 \\ \hline \end{gathered}$	79.6	67.6	62.4	57.2	52.0	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2				
$\begin{aligned} & \text { Seats } 24 \\ & \text { or } 25 \\ & \hline \end{aligned}$	74.4	62.4	57.2	52.0	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2					
$\begin{gathered} \text { Seats } 22 \\ \text { or } 23 \\ \hline \end{gathered}$	69.2	57.2	52.0	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2						
$\begin{gathered} \hline \text { Seats } 20 \\ \text { or } 21 \\ \hline \end{gathered}$	64.0	52.0	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2							
$\begin{gathered} \text { Seats } 18 \\ \text { or } 19 \\ \hline \end{gathered}$	58.8	46.8	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2								
$\begin{gathered} \text { Seats } 16 \\ \text { or } 17 \\ \hline \end{gathered}$	53.6	41.6	36.4	31.2	26.0	20.8	15.6	10.4	5.2									
$\begin{aligned} & \text { Seats } 14 \\ & \text { or } 15 \\ & \hline \end{aligned}$	48.4	36.4	31.2	26.0	20.8	15.6	10.4	5.2										
$\begin{aligned} & \hline \text { Seats } 12 \\ & \text { or } 13 \\ & \hline \end{aligned}$	43.2	31.2	26.0	20.8	15.6	10.4	5.2											
$\begin{aligned} & \text { Seats } 10 \\ & \text { or } 11 \\ & \hline \end{aligned}$	38.0	26.0	20.8	15.6	10.4	5.2			NOTE									
$\begin{gathered} \text { Seats } 8 \\ \text { or } 9 \\ \hline \end{gathered}$	32.8	20.8	15.6	10.4	5.2					Add m Plus	oment +) sign	for tro . Subt	op mo ract fo	vement r move	aft. ment			
$\begin{gathered} \hline \text { Seats } 6 \\ \text { or } 7 \\ \hline \end{gathered}$	27.6	15.6	10.4	5.2						forwa		inus	sign.					
$\begin{gathered} \text { Seats } 4 \\ \text { or } 5 \\ \hline \end{gathered}$	22.4	10.4	5.2							Based	on 26	pound	s per t	oop.				
$\begin{aligned} & \text { Seats } 2 \\ & \text { or } 3 \end{aligned}$	17.2	5.2																
Seat 1	12.0																	

N	1	W EIGHT
		MOM/1000
-	2	W EIGHT
B		MOM/1000
E	3	WEIGHT
		MOM/1000
$\begin{aligned} & 0 \\ & \mathrm{~F} \end{aligned}$	4	WEIGHT
		MOM/1000
P	5	WEIGHT
T		MOM/1000
E	6	WEIGHT
N		MOM/1000
	7	WEIGHT
		MOM / 1000
	8	WEIGHT
		MOM/1000

250	250	250
52.0	77.0	102.0
500	500	500
104.0	154.0	204.0
750	750	750
156.0	231.0	306.0
1000	1000	1000
208.0	308.0	408.0
1250	1250	1250
260.0	385.0	510.0
1500	1500	1500
312.0	462.0	612.0
1750	1750	1750
364.0	539.0	714.0
2000	2000	2000
416.0	616.0	816.0

NOTES:

Litters listed on Chart "A". Each tier contains 4 litters.

ARM $=331.0$		ARM $=331.0$	
WEIGHT (LB)	MOM/ 1000	WEIGHT (LB)	MOM/ 1000
5	2	3000	993
10	3	3500	1159
20	7	4000	1324
50	17	4500	1490
100	33	5000	1655
200	66	5500	1821
300	99	6000	1986
400	132	6500	2152
500	166	7000	2317
600	199	7500	2483
700	232	8000	2648
800	265	8500	2814
900	298	9000	2979
1000	331	9500	3145
1100	364	10000	3310
1200	397	10500	3476
1300	430	11000	3641
1400	463	11500	3807
1500	497	12000	3972
1600	530	12500	4138
1700	563	13000	4303
1800	596	13500	4469
1900	629	14000	4634
2000	662	14500	4800
2200	728	15000	4965
2400	794	15500	5131
2600	861	16000	5296
2800	927		

NOTE:
External cargo hook capacity is 16000 pounds.

1. Explanation of center of gravity limits:

Fwd - The forward CG limit is 30 inches forward of the datum line between rotors, up to the gross weight of 27500 pounds. This limit varies in a linear manner from 30 :nches forward at the gross weight of 27500 pounds to 17 inches forward of the center line between rotors, at the gross weight of 33000 pounds. (See illustration below.)

Aft - The aft CG limit is 18 inches aft of the datum line between rotors, up to the gross weight of 27500 pounds. This limit varies in a linear manner from 18 inches aft at the gross weight of 27500 pounds to 6 inches aft of the datum line between rotors, at the gross weight of 33000 pounds. (See illustration below.)

2. Gross weight limitations:

Takeoff \qquad Pounds:
Landing Pounds ${ }^{2 \%}$
*NOTE: Service activities shall insert, or substitute, current figures from latest applicable lechmcal order covering operating restrictions.

$\begin{array}{ll} H & \\ 3 & \infty \\ 3 & 2 \\ \sim & \vdots \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \end{array}$	CENTER OF GRAVITY TABLE																				$\begin{array}{ll} H & 0 \\ z & 0 \\ 0 & Z \\ 0 & 0 \\ 0 & 0 \\ \sim & 0 \\ 0 & 4 \end{array}$
	- FWD. C.G. LIMIT L. C. LIMITS LTM C.G. LIMIT-																				
	301	302	303	305	307	309	311	314	317	321	326	331	337	340	342	344	346	347	348	349	
	MOMENT/1000																				
16000	04816	04832	04848	04880	0	4, 4	976	05024	05072	05136	05216	05298	05392	05440	05	05504	055	0555	05368	05584	16000
16200	04876	04892	04909	04941	04973	05006	05038	05087	05135	05200	05281	05362	05459	05508	05540	05573	05605	05621	05638	05554	16200
16400	04936	04953	04969	05002	05035	05088	05100	05150	05199	05264	05346	05428	05527	05576	05009	05642	05674	05691	05707	05724	16400
16.60	04997	05013	05030	05063	05096	05129	05163	05212	05262	05329	05412	05495	05594	05644	05677	05710	057744	05760	05777	05793	16600
16.800	05057	05074	05090	05124	05158	05191	05225	05275	05326	05393	05477	05561	05662	05712	05746	05779	05813	05830	05846	05863	16800
17000	05117	05134	05151	05185	05214	03253	05287	05338	05389	05457	05542	05627	05729	05780	05814	05848	05882	05899	05916	05933	17000
17200	05177	05194	05212	05246	05280	05315	05349	05401	05452	05521	05607	05693	05796	05848	05882	05917	05951	05968	05986	06003	17200
17400	05237	05255	05272	05307	05342	05377	05411	05464	05516	05585	05672	05759	05884	05916	05951	05986	06020	06038	$0 \leq 055$	06073	17400
17600	05298	05315	05333	053388	05403	05438	05474	05526	05579	05650	05738	05826	05931	05984	06019	06034	06090	06107	06125	06142	17600
17800	05358	05376	05393	05429	05465	05500	05536	05589	05643	05714	05803	05892	05999	06052	06088	06123	06159	00177	06194	06212	17800
18000	05418	05438	05454	05490	05526	05562	05598	05652	05706	05778	05868	05958	06066	06120	06156	06192	06228	06246	06284	06282	18000
28200	35478	05496	05515	05551	05587	05624	05660	05715	05769	05842	05933	06024	06133	06188	00224	06261	06297	06315	06334	06352	18200
18400	05538	05557	05575	05612	05649	05686	05722	05778	05833	05906	05998	06090	06201	06250	06293	06330	06366	06385	06403	06422	18400
18600	05599	05617	05636	05673	05710	05747	05785	05840	05896	05971	06064	06157	06268	06324	06361	06398	06436	06454	06473	06491	18600
18800	05659	05678	05696	05734	05772	05809	05847	05903	05960	06035	06129	06223	06336	06392	06430	06467	06505	06524	06542	06561	18800
19000	05719	05738	05757	05795	05833	05871	05909	05986	06023	06099	06196	06289	06403	00460	06498	06536	06574	06593	06612	06631	19000
19200	05779	05798	05818	05858	05894	05933	05971	06029	06086	06163	06259	06353	06470	06528	08566	06603	06643	06662	06682	06701	19200
19400	05839	05859	05878	05917	05956	05995	06033	06092	06150	06227	06324	05421	06538	06596	06635	06674	06712	06732	06751	06771	19400
19600	05900	05919	05939	05978	06017	06056	06096	06154	06213	06292	06390	06488	06605	06664	06703	06742	06782	06801	06821	06840	19600
19800	05960	05980	05999	06039	06079	06118	06158	06217	06277	06356	06455	06354	06873	06732	06772	06811	06851	06871	06890	06910	19800
20000	08020	06040	06060	06100	06140	06180	05220	06280	06340	06420	06520	06620	06740	06300	06840	06880	06920	06940	06980	06980	20000
20200	06080	06100	06121	06161	06201	06242	05282	06343	06403	06484	06585	06686	06807	06868	06908	06949	06989	07009	07030	07050	20200
20400	06140	06161	06181	06222	06263	06304	06344	06406	06467	0654日	06650	06752	06875	06936	06977	07018	07058	07079	07099	07120	20400
20600	06201	06221	06242	06283	06324	06365	06407	06468	06530	06613	06716	06619	06942	07004	07045	07086	07128	07148	07169	07189	20800
20800	00261	06282	06302	06344	06386	06427	08469	06531	06594	06677	06781	06885	07010	07072	07114	07155	07197	07218	07238	07259	20800
21000	08321	06342	06363	08405	06447	08489	06531	06594	06657	06741	06848	06951	07077	07140	07182			07287	07308		
21200	06381	06402	06424	06466	06508	06551	06593	06657	06720	06805	06911	07017	07144	07208	07250	07293	07335	07356	07378	07399	21200
21400	06441	06463	06484	06527	06570	06613	06695	06720	06784	06869	06976	07083	07212	07276	07319	07362	07404	07426	07447	07469	21400
21600	06502	05523	06545	06588	08631	06674	06718	06782	00847	06934	07042	07150	07279	07344	07387	07430	07474	07495	07517	07538	21609
21800	06562	05584	06605	06649	08693	06736	06780	06845	06911	06998	07107	07216	07347	07412	07456	07499	07543	07565	07586	07608	21800
22000	06622	06644	06666	06710	06754	06798	06842	06908	06974	07062	07172	07282	07414	07480	07524	07568	07612	07634	07656	07678	22000
22200	08682	06704	06727	06771	06815	06860	06904	06971	07037	07126	07237	07348	07481	07548	07592	07637	07681	07703	07772	07748	22200
22400	05742	06765	06787	06832	06877	06922	06966	07034	07101	07190	07302	07414	07549	07616	07661	07706	07750	07773	07795	07818	22400
22600	06803	06825	06848	06893	06938	06983	07029	07096	07164	07255	07368	07481	07616	07684	07729	07774	07820	07842	07865	07887	22600
22800	06863	06886	05908	06954	07000	07045	07091	07159	07228	07319	07433	07547	07684	07752	07798	07843	07889	07912	07934	07957	22800
23000	06923	06946	06969	07015	07061	07107	07153	07222	07291	07383	07498	07613	07751	07820	07866	07912	0795a	07981	08004	08027	23000
23400	07043	07067	07090	07137	C7184	07231	07277	07348	07418	07511	07628	07745	07886	07956	08003	07981	08027	08050	08074	08097	23200
23200	00983	07006	07030	07076	07122	07169	07215	07285	07354	07447	07563	07679	07818	07888	07934	08050	08096	08120	08143	08167	23400
23600	07104	07127	07151	07198	07245	07292	07340	07410	07481	07576	076.94	07812	07953	08024	08071	08118	08166	08189	08213	08236	23600
23800	07164	07188	07211	07259	07307	07354	07402	07473	07545	07640	07759	07878	08021	08092	08140	08187	08235	08259	08282	08306	23800
24000	07224	07248	07272	07320	07368	07416 07478	07464	07536 07599	07608 07671	07704 07768	07824 07889	07944 08010	08088	08160	08208	08256 08325	08304	08328 08397	08352	08376	24000 24200
24200	07284	07308	07333	07381	07429	07478	07528	07599	07671	07768	07889	08010	08155	08228	08276	08325 08394	08373	08397	08422	08446	24200
24400	07344	07369	07393	0744?	07491	07540	07588	07662	07735	07832	07954	08076	08223	08296	08345	08394	08442	08487	08491	08516	24400
24600	07405	07429	07454	07503	07552	07801	07651	07724	07798	07897	08020	08143	08290	08364	08413	08462 08532	08512 08581	08536 08606	08561	08585	24600
24800	07465	07490	07514	07584	07614	07663	07713	07787	07862	07961	08085	08709	08358	08432	08482	08531	08581	08606	08830	08655	24800

NOTES
)

[^0]: 1 STARTER DRIVE PAD
 2 AXIAL COMPRESSOR
 3 CENTRIFUGAL COMPRESSOR
 COMPRESSOR TURBINE
 5 FIRST-STAGE POWER TURBINE
 6 FLOW SPILITTER SCOOP
 7 SECOND-STACE POWER TURBINE
 8 COMBUSTION CHAMBER
 9 VAPORIZER
 10 POWER TURBINE SHAFT
 11 ACCESSORY GEAR BOX
 12 OIL TANK CAVITY
 13 OUTPUT SHAFT

